七年級數(shù)學教案15篇
作為一名默默奉獻的教育工作者,就有可能用到教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么什么樣的教案才是好的呢?下面是小編整理的七年級數(shù)學教案,歡迎閱讀與收藏。
七年級數(shù)學教案1
教學目標:
1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點靈活地選擇解法。
2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質在解方程中的作用,學會通過觀察,結合方程的特點選擇合理的思考方向進行新知識探索。
3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗“化歸”的思想。
教學重難點:
重點:解一元一次方程的基本步驟和方法。
難點:含有分母的一元一次方程的解題方法。
教學過程:
一、新課導入:
請同學們和老師一起解方程:
并回答:解一元一次方程的一般步驟和最終的目的是什么?
二、講授新課
請給同學們介紹紙草書(P95)。
問題:一個數(shù),它的三分之二,它的'一半,它的七分之一,它的全部,加起來總共是33.試問這個
數(shù)是多少?
并引入讓同學運用設未知數(shù)的方法,列出相應的方程。
并回答:這個方程和我們以前學習的方程有什么不同?
同學們和老師一起完成解上述方程,并引入去分母。
例1、
例2、
活動:同學們,解一元一次方程的步驟有哪些?要注意哪些?
看一看你會不會錯:
(1)解方程:
(2)解方程:
典型例題:解方程:
想一想:去分母時要注意什么問題?
(1)方程兩邊每一項都要乘以各分母的最小公倍數(shù)
(2)去分母后如分子中含有兩項,應將該分子添上括號
選一選:
練一練:當m為何值時,整式和的值相等?
議一議:如何解方程:
注意區(qū)別:
1、把分母中的小數(shù)化為整數(shù)是利用分數(shù)的基本性質,是對單一的一個分數(shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的左右兩邊同乘或除以一個不為0的數(shù)。
2、而去分母則是根據(jù)等式性質2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分數(shù)。
課堂小結:
。1)怎樣去分母?應在方程的左右兩邊都乘以各分母的最小公倍數(shù)。
有沒有疑問:不是最小公倍數(shù)行不行?
。2)去分母的依據(jù)是什么?
等式性質2
。3)去分母的注意點是什么?
1、去分母時等式兩邊各項都要乘以最小公倍數(shù),不可以漏乘。
2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應加括號。
。4)解一元一次方程的一般步驟:
布置作業(yè):P98,習題3.3第3題
補充作業(yè):解方程:
。1)
。2)
板書設計:
教學反思:
七年級數(shù)學教案2
一、素質教育目標
(一)知識教學點
1.理解有理數(shù)乘方的意義.
2.掌握有理數(shù)乘方的運算.
(二)能力訓練點
1.培養(yǎng)學生觀察、分析、比較、歸納、概括的能力.
2.滲透轉化思想.
(三)德育滲透點:培養(yǎng)學生勤思、認真和勇于探索的精神.
(四)美育滲透點
把記成,顯示了乘方符號的簡潔美.
二、學法引導
1.教學方法:引導探索法,嘗試指導,充分體現(xiàn)學生主體地位.
2.學生學法:探索的性質→練習鞏固
三、重點、難點、疑點及解決辦法
1.重點:運算.
2.難點:運算的符號法則.
3.疑點:①乘方和冪的區(qū)別.
②與的區(qū)別.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.
七、教學步驟
(一)創(chuàng)設情境,導入 新課
師:在小學我們已經(jīng)學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?
生:可以記作,讀作的四次方.
師:呢?
生:可以記作,讀作的五次方.
師:(為正整數(shù))呢?
生:可以記作,讀作的次方.
師:很好!把個相乘,記作,既簡單又明確.
【教法說明】教師給學生創(chuàng)設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數(shù)學的發(fā)展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.
師:在小學對底數(shù),我們只能取正數(shù).進入中學以后我們學習了有理數(shù),那么還可取哪些數(shù)呢?請舉例說明.
生:還可取負數(shù)和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.
非常好!對于中的,不僅可以取正數(shù),還可以取0和負數(shù),也就是說可以取任意有理數(shù),這就是我們今天研究的課題:(板書).
【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據(jù)初一學生的認知水平,分層逐步說明可以取正數(shù),可以取零,可以取負數(shù),最后總結出可以取任意有理數(shù).
(二)探索新知,講授新課
1.求個相同因數(shù)的積的運算,叫做乘方.
乘方的結果叫做冪,相同的因數(shù)叫做底數(shù),相同的因數(shù)的個數(shù)叫做指數(shù).一般地,在中,取任意有理數(shù),取正整數(shù).
注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.
鞏固練習(出示投影1)
(1)在中,底數(shù)是__________,指數(shù)是___________,讀作__________或讀作___________;
(2)在中,-2是__________,4是__________,讀作__________或讀作__________;
(3)在中,底數(shù)是_________,指數(shù)是__________,讀作__________;
。4)5,底數(shù)是___________,指數(shù)是_____________.
【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區(qū)別表示底數(shù)是-2,指數(shù)是4的冪;而表示底數(shù)是2,指數(shù)是4的冪的相反數(shù).為后面的計算做鋪墊.通過第(4)小題指出一個數(shù)可以看作這個數(shù)本身的一次方,如5就是,指數(shù)1通常省略不寫.
師:到目前為止,對有理數(shù)業(yè)說,我們已經(jīng)學過幾種運算?分別是什么?其運算結果叫什么?
學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.
生:到目前為止,已經(jīng)學習過五種運算,它們是:
運算:加、減、乘、除、乘方;
運算結果:和、差、積、商、冪;
教師對學生的回答給予評價并鼓勵.
【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養(yǎng)學生歸納、總結的能力.
師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.
學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.
【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算.向學生滲透轉化的'思想.
2.練習:(出示投影2)
計算:1.(1)2, (2), (3), (4).
2.(1),,,.
。2)-2,,.
3.(1)0, (2), (3), (4).
學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.
師:請同學們觀察、分析、比較這三組題中,每組題中底數(shù)、指數(shù)和冪之間有什么聯(lián)系?
先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.
生:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),零的任何次冪都是零.
師:請同學們繼續(xù)觀察與,與中,底數(shù)、指數(shù)和冪之間有何聯(lián)系?你能得出什么結論呢?
學生活動:學生積極思考,同桌之間、前后桌之間互相討論.
生:互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等.
師:請同學思考一個問題,任何一個數(shù)的偶次冪是什么數(shù)?
生:任何一個數(shù)的偶次冪是非負數(shù).
師:你能把上述結論用數(shù)學符號表示嗎?
生:(1)當時,(為正整數(shù));
(2)當
。3)當時,(為正整數(shù));
。4)(為正整數(shù));
(為正整數(shù));
(為正整數(shù),為有理數(shù)).
【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創(chuàng)造發(fā)揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.
七年級數(shù)學教案3
教學目標:
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學生數(shù)學的數(shù)形結合思想和轉化能力,學會主動探求問題和尋找解決問題的方法。
教學重點:一元二次不等式的解法(圖象法)
教學難點:
(1)一元二次方程、一元二次不等式與二次函數(shù)的關系;
(2)數(shù)形結合思想的滲透
教學方法與教學手段:
嘗試探索教學法、歸納概括。
教學過程:
一、復習引入
1.復習一元一次方程、一元一次不等式與一次函數(shù)的關系
[師]前面我們已經(jīng)學習了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學習了一元一次不等式的解法,還記得是用什么方法解的嗎?
學生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學習了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學們畫出 y=2x-7
[師]請同學們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當x 時,y = 0,即 2x-7 0;
當x 時,y < 0,即 2x-7 0;
當x 時,y > 0,即 2x-7 0;
注:(1)引導學生由圖象得出結論(數(shù)形結合)
(2)由學生填空(一邊演示y<0,y>0部分圖象)
從上例的特殊情形,你能得出什么結論?
注:教師引導下學生發(fā)現(xiàn)其結論,并由學生嘗試敘述:一元一次方程ax+b=0的根實質上就是直線y=ax+b與x軸交點的橫坐標;一元一次不等式ax+b>0(或ax+b<0)的解集實質上就是使得函數(shù)的圖象在x軸上方還是下方時x的取值范圍。
2.新課導入
[師]我們可以利用一次函數(shù)的圖象快速準確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3<0(即y<0)的.解集是
注:學生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y<0部分圖象)
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導學生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應的二次函數(shù)圖象與x軸的位置關系也有三種情況,是由 >0, =0,<0來確定的。
2、講解例題
[師]接下來請同學們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學生共同詳細分析(1),強調解題規(guī)范性,其余(2)(3)(4)由學生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結合圖象)
所以原不等式的解集是{x| x<- x="">2 }
四、課后作業(yè):書P21/習題1.5/1.3.5.6
五、教學設計說明:
1、本節(jié)課教學設計力圖體現(xiàn)以學生發(fā)展為本,遵循學生的認知規(guī)律,體現(xiàn)循序漸進的教學原則,通過對原有知識的復習,引導學生類比探索新的知識,激發(fā)學生的求知欲望,調動學生的積極性。
2、本節(jié)課采用在教師引導下啟發(fā)學生探索發(fā)現(xiàn),體會解題過程中形結合思想方法,使之獲得內(nèi)心感受。
3、本節(jié)課的重點是利用圖象解一元二次不等式,讓學生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結可以訓練學生的收斂思維,有助于完善學生的思維結構。
4、本節(jié)課的例題及課堂練習是課本上的習題,其目的在于落實基礎,提高運算能力。
七年級數(shù)學教案4
教學目標
1.知識與技能
①理解有理數(shù)的意義.②能把給出的有理數(shù)按要求分類.③了解0在有理數(shù)分類的作用.
2.過程與方法
經(jīng)歷本節(jié)的學習,培養(yǎng)學生樹立分類討論的觀點和能正確地進行分類的'能力.
3.情感、態(tài)度與價值觀
通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學生進行辯證唯物主義教育.
教學重點難點
重點:會把所給的各數(shù)填入它所在的數(shù)集的圖里.難點:掌握有理數(shù)的兩種分類.
教與學互動設計
(一)創(chuàng)設情境,導入新課
討論交流現(xiàn)在,同學們都已經(jīng)知道除了我們小學里所學的數(shù)之外,還有另一種形式的數(shù),即負數(shù).大家討論一下,到目前為止,你已經(jīng)認識了哪些類型的數(shù).
(二)合作交流,解讀探究
學生列舉:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…
議一議你能說說這些數(shù)的特點嗎?
學生回答,并相互補充:有小學學過的整數(shù)、0、分數(shù),也有負整數(shù)、負分數(shù).
說明:我們把所有的這些數(shù)統(tǒng)稱為有理數(shù).
七年級數(shù)學教案5
教學目標
知識與能力
從簡單的轉盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。
教學思考
能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題
在轉盤游戲過程中,經(jīng)歷猜測結果,實驗驗證,分析試驗結果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。
情感態(tài)度與價值觀
在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。
教學重點難點:
在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。
教學過程
創(chuàng)設情境,切入標題
同學們,商場經(jīng)常利用轉盤游戲進行抽獎,你認為顧客們的中獎可能性有多大呢?這節(jié)課我們就來探究一下有關轉盤游戲的問題。 新課探究
請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?
請各小組分別派一名代表,看哪組能轉出紅色。
結果,8小組有6組轉出了紅色。
為什么會出現(xiàn)這樣的結果呢?
因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。
大家同意這種看法嗎?下面我們親自動手感受一下。
學生按照題目要求進行實驗。
請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。
請同學們對我們的'實驗結果進行分析交流,談談你在試驗中有哪些心得。
根據(jù)觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們?nèi)嗟膶嶒灲Y果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。
在小組內(nèi)實驗結果不明顯,實驗次數(shù)越多越能說明問題。
通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。
游戲與交流
下面我們利用轉盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。
每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。
請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。
如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。
同學們說出很多種方法,不一一列舉。
“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。
如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。
同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。
以下過程同教學設計,略去。
隨堂練習
指導學生完成教材第206頁習題。
課時小結
學生可從各個方面加以小結。 布置作業(yè)
仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。
七年級數(shù)學教案6
課題:1.2.3相反數(shù)
教學目標
1,掌握相反數(shù)的概念,進一步理解數(shù)軸上的點與數(shù)的對應關系;
2,通過歸納相反數(shù)在數(shù)軸上所表示的點的特征,培養(yǎng)歸納能力;
3,體驗數(shù)形結合的思想。
教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征
知識重點相反數(shù)的概念
教學過程(師生活動)設計理念
設置情境
引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類
4,-2,-5,+2
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)
思考結論:教科書第13頁的思考
再換2個類似的數(shù)試一試。
歸納結論:教科書第13頁的歸納。以開放的形式創(chuàng)設情境,以學生進行討論,并培養(yǎng)分類的能力
培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想
深化主題提煉定義給出相反數(shù)的定義
問題2:你怎樣理解相反數(shù)定義中的“只有符號不同”和“互為”一詞的含義?零的相反數(shù)是什么?為什么?
學生思考討論交流,教師歸納總結。
規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a
思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。
深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的'一部分。
強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義
給出規(guī)律
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數(shù)是-5和+5
練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法
小結與作業(yè)
課堂小結
1,相反數(shù)的定義
2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征
3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?
本課作業(yè)1,必做題教科書第18頁習題1.2第3題
2,選做題教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結合的思想.
2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結合的數(shù)學方法,數(shù)與形的相互轉化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.
3,本教學設計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.
七年級數(shù)學教案7
一、 教學目標
1、 在了解相反意義量的基礎上,使學生了解正負數(shù)的概念和學習正負數(shù)的意義。
2、 使學生能正確判斷一個數(shù)是正數(shù)還是負數(shù),明確零既不是正數(shù)也不是負數(shù)。
3、 學會用正負數(shù)表示實際問題中具有相反意義的量。
二、 教學重點和難點
重點:正負數(shù)的概念
難點:負數(shù)的概念
三、 教具
投影片、實物投影儀
四、 教學內(nèi)容
(一 )引入
師:我們知道,為了表示物體的個數(shù)和事物的順序,產(chǎn)生了1,2,3,4……這些數(shù),我們把它叫做什么數(shù)?
生:自然數(shù)
師:為了表示“沒有”,又引入了一個什么數(shù)?
生:自然數(shù)0
師:當測量和計算的結果不是整數(shù)時,又引進了什么數(shù)?
生:分數(shù)(小數(shù))
師:可見數(shù)的概念是隨著生產(chǎn)和生活的需要而不斷發(fā)展的。請同學們想一想,在現(xiàn)實生活中是否還存在著別類型的數(shù)呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。
請學生用數(shù)表示這些量,遭遇表示困難。
師:為了能表示這些量,我們需要引入一種新數(shù)這就是本節(jié)課所要學習的內(nèi)容。[板書:1、1正數(shù)與負數(shù)]
(二)新課教學
1、 相反意義的量
師:在現(xiàn)實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)
(1) 汽車向東行駛2.5千米和向西行駛1.5千米;
(2) 氣溫從零上6攝氏度下降到零下6攝氏度;
(3) 風箏上升10米或下降5米。
引導學生明確具有相反意義的量的特征:(1)有兩個量 (2)有相反的意義
請學生舉出一些相反意義的量的實例。
教師歸結:相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進與運出,上升與下降等。
2、 正數(shù)與負數(shù)
師:用小學里學過的數(shù)能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?
由師生討論后得出:我們把一種意義的量規(guī)定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規(guī)定為負的,用“-”(讀作負)號來表示。
師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負6攝氏度),請同學們用同樣的方法表示(1)、(2)兩題。
生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負5米)。
師:像+6,+10,+2.5等前面放有“+”號的`數(shù)叫做正數(shù),像-6,-5,-1.5等前面放有“-”號的數(shù)叫做負數(shù)。正號可以省略不寫,如+5可以寫成5,但負數(shù)的負號能省略不寫嗎?
生:(討論后得出)不能。
師:(以溫度計為例)溫度計中的0不是表示沒有溫度,它通常表示水結成冰時的溫度,是零上溫度與零下溫度的分界點,因此得出:零既不是正數(shù)也不是負數(shù)。
(三)、練習
1、 學生完成課本第4頁練習1,2,3
2、 補充練習
(1)在-2,+2.5,0, ,-0.35,11中,正數(shù)是 ,負數(shù)是 ;
(2)如果向東為正,那么走-50米表示什么意思?如果向南為正,那么走-50米又表示什么意思?
(3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為 。
(四)小結
1、 引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示。
2、 在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定。
3、 要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與小學里學過的數(shù)有很大的區(qū)別。
(五)作業(yè)
見作業(yè)1.1節(jié)作業(yè)。
七年級數(shù)學教案8
學生很容易解決,相互交流,自我評價,增強學生的主人翁意識。
3、電腦演示:
如下圖,第一行的圖形繞虛線旋轉一周,便能形成第二行的某個幾何體,用線連一連。
由平面圖形動成立體圖形,由靜態(tài)到動態(tài),讓學生感受到幾何圖形的奇妙無窮,更加激發(fā)他們的好奇心和探索欲望。
四、做一做(實踐)
1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。
2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。
五、試一試(探索)
課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學生探索的欲望。
教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體
1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。
2、再讓學生觀察、討論其它正多面體的`頂點數(shù)、棱數(shù)和面數(shù)。將結果記入書上的P128的表格。引導學生發(fā)現(xiàn)結論。
3、(延伸):若隨意做一個多面體,看看是否還是那個結果。
學生在探索過程中,可能會遇到困難,師生可以共同參與,適當點撥,歸納出歐拉公式,并介紹歐拉這個人,進行科學探索精神教育,充分挖掘學生的潛能,讓學生積極參與集體探討,建立良好的相互了解的師生關系。
六、小結,布置課后作業(yè):
1、用六根火柴:①最多可以拼出幾個邊長相等的三角形?②最多可以拼出如圖所示的三角形幾個?
2、針對我校電腦室對全體學生開放的優(yōu)勢,教師告訴學生網(wǎng)址,讓學生從網(wǎng)上學習正多面體的制作。
讓學生去動手操作,根據(jù)自身的能力,充分發(fā)揮創(chuàng)造性思維,培養(yǎng)學生的創(chuàng)新精神,使每個學生都能得到充分發(fā)展。
七年級數(shù)學教案9
學習目標:
1、學會用計算器進行有理數(shù)的除法運算.
2、掌握有理數(shù)的混合運算順序.
3、通過探究、練習,養(yǎng)成良好的學習習慣
學習重點:有理數(shù)的混合運算
學習難點:運算順序的確定與性質符號的處理
教學方法:觀察、類比、對比、歸納
教學過程
一、學前準備
1、計算
1)(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的問題1,計算方便嗎?想過別的方法嗎?
2、由上面的問題2,你的計算方法是先算法,再算法。
3、結合問題1,閱讀課本P36—P37頁內(nèi)容(帶計算器的同學跟著操作、練習)
4、結合問題2,你先猜想,有理數(shù)的混合運算順序應該是?
5、閱讀P36,并動手做做
三、新知應用
1、計算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、師生小結
四、回顧與反思
請你回顧本節(jié)課所學習的主要內(nèi)容
3頁
五、自我檢測
1、選擇題
1)若兩個有理數(shù)的和與它們的積都是正數(shù),則這兩個數(shù)()
A.都是正數(shù)B.是符號相同的非零數(shù)C.都是負數(shù)D.都是非負數(shù)
2)下列說法正確的是()
A.負數(shù)沒有倒數(shù)B.正數(shù)的倒數(shù)比自身小
C.任何有理數(shù)都有倒數(shù)D.-1的`倒數(shù)是-1
3)關于0,下列說法不正確的是()
A.0有相反數(shù)B.0有絕對值
C.0有倒數(shù)D.0是絕對值和相反數(shù)都相等的數(shù)
4)下列運算結果不一定為負數(shù)的是()
A.異號兩數(shù)相乘B.異號兩數(shù)相除
C.異號兩數(shù)相加D.奇數(shù)個負因數(shù)的乘積
5)下列運算有錯誤的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列運算正確的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、計算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作業(yè)
1、P39第7題(4、5、7、8)、第8題
2、選做題:P39第10、11、12、1314、15題
七年級數(shù)學教案10
一.教學目標:
1.認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數(shù)學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二.教學重難點
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程。
三.教學過程
(一)創(chuàng)設情景,引入課題
1.本班共有40人,請問能確定男女生各幾人嗎?為什么?
。1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)
。2)這是什么方程?根據(jù)什么?
2.男生比女生多了2人。設男生x人,女生y人.方程如何表示? x,y的值是多少?
3.本班男生比女生多2人且男女生共40人.設該班男生x人,女生y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
像這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
。ㄔO計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學)
。ǘ┨骄啃轮,練習鞏固
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]
。2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。
、賦2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)的思考”,進而完善血生對二元一次方程概念的理解。)
2.二元一次方程組的解的概念
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
。2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>
方程x+y=0的解,方程2x+3y=2的解,方程組的解。
。3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
。4)練習:已知是方程組的'解,求a,b的值。
(三)合作探索,嘗試求解
現(xiàn)在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數(shù)x,y,試找出方程組的解.
學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。
一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試.
。ㄔO計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學活動的經(jīng)驗)
2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1) 設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
3.例 已知方程3X+2Y=10
、女擷=2時,求所對應的Y 的值;
⑵取一個你自己喜歡的數(shù)作為X的值,求所對應的Y的值;
、怯煤琗的代數(shù)式表示Y;
⑷用含Y 的代數(shù)式表示X;
、僧擷=-2,0 時,所對應的Y值是多少;
。ㄔO計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程。)
(四)課堂小結,布置作業(yè)
1.這節(jié)課學哪些知識和方法?
2.你還有什么問題或想法需要和大家交流?
3.教材P82
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
七年級數(shù)學教案11
教材分析:
本節(jié)課是新教材幾何教學的第一節(jié)課,通過學生身邊的現(xiàn)實生活中的實物,讓學生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學生學習幾何的熱情.。無需對具體定義的深刻理解,只要學生能用自己的語言描述它們的'某些特征。
教學目標:
知識目標:
在具體情境中認識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認識點、線、面、體,初步感受點、線、面、體之間的關系。
能力目標:
讓學生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學生抽象、辨別能力。
情感目標:
感受圖形世界的豐富多彩,激發(fā)學習幾何的熱情。
教學重點:
經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關系。
教學難點:
抽象能力的培養(yǎng),學習熱情的激發(fā)。
教學方法:
引導發(fā)現(xiàn)、師生互動。
教學準備:
多媒體課件、學生身邊的實物等。
教學過程:
合作學習
問題1:
我們已學過的或認得的存有哪些幾何體?
。▽W生討論、交流)
問題2:
你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?
(學生討論、舉例)
課本中P162中的合作學習
。ń處熆啥嗯e一些平面與曲面的實例讓學生感受、辨別)
特別指出:
數(shù)學中的平面是可以無限伸展的
議一論
P163課內(nèi)練習1
P163課內(nèi)練習2
師生討論指出:
線與線相交成點,面與面相交成線。
想一想:
觀察下圖,你發(fā)現(xiàn)什么?
師生討論
議一議:
日常生活中的哪些事物給人以點、線的形象。
指出:
日常生活中點與面只是相對的一個感念。如:
在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。
活動探究:
P164課內(nèi)練習3
應用拓展:
請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構件,盡可能多地構思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構思出其他的圖形嗎?比一比,看誰想得多。
議一議:
本節(jié)課有什么收獲?
布置作業(yè)
七年級數(shù)學教案12
學習目標
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力.
2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:
直線平行的條件的應用.
學習難點:
選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題)(第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是()
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則()
A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的.四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級數(shù)學教案13
學習目標:
1.會用正.負數(shù)表示具有相反意義的量.
2.通過正.負數(shù)學習,培養(yǎng)學生應用數(shù)學知識的意識.
3.通過探究,滲透對立統(tǒng)一的辨證思想
學習重點:
用正.負數(shù)表示具有相反意義的量
學習難點:
實際問題中的數(shù)量關系
教學方法:
講練相結合
教學過程
一.學前準備
通過上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?
引導學生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題
問題2:(教科書第4頁例題)
先引導學生分析,再讓學生獨立完成
例(1)一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
。2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長—1kg,小強體重增長0kg.
(2)六個國家20xx年商品進出口總額的增長率:
美國—6.4%,德國1.3%,
法國—2.4%,英國—3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習
從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導學生理解.
在學生的討論中簡單介紹分類的數(shù)學思想先不要給出有理數(shù)的概念.
在例題中,讓學生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.
通過問題(2)提醒學生審題時要注意要求,題中求的'是增長率,不是增長值.
四.閱讀思考1頁
。ń炭茣8頁)用正負數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
五.小結
1.本節(jié)課你有那些收獲?
2.還有沒解決的問題嗎?
六.應用與拓展
1.必做題:
教科書5頁習題4.5.:6.7.8題
2.選做題
1).甲冷庫的溫度是—12°C,乙冷庫的溫度比甲冷酷低5°C,則乙冷庫的溫度是.
2.)一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9mm,加工要求最大不超過標準尺寸多少?最小不小于標準尺寸多少?
七年級數(shù)學教案14
【學習目標】:
1、掌握正數(shù)和負數(shù)概念;
2、會區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3、體驗數(shù)學發(fā)展是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。
【重點難點】:正數(shù)和負數(shù)概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數(shù)請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數(shù)和分數(shù)夠用了嗎?有沒有比0小的數(shù)?如果有,那叫做什么數(shù)?
二、自主學習
1、正數(shù)與負數(shù)的產(chǎn)生
。1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子: 。
。2)負數(shù)的產(chǎn)生同樣是生活和生產(chǎn)的需要
2、正數(shù)和負數(shù)的表示方法
。1)一般地,我們把上升、運進、零上、收入、前進、高出等規(guī)定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規(guī)定為負的。正的量就用小學里學過的.數(shù)表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數(shù)前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
。2)活動: 兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數(shù)表示.
(3)閱讀P2的內(nèi)容
3、正數(shù)、負數(shù)的概念
1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。
【課堂練習】:
1. P3第1,2題(直接做在課本上)。
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數(shù):?13,?2,3.14,+3065,0,-239; 54
則正數(shù)有_____________________;負數(shù)有____________________。
4.下列結論中正確的是 ????????????????( )
A.0既是正數(shù),又是負數(shù)
C.0是最大的負數(shù)
【要點歸納】:
正數(shù)、負數(shù)的概念:
。1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
。2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。
【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數(shù)分別表示潛水艇和鯊魚的高度。
【課后作業(yè)】P5第1、2題
七年級數(shù)學教案15
[教學目標]
1. 通過動手、操作、推斷、交流等活動,進一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達能力
2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一.創(chuàng)設情境 激發(fā)好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的`構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據(jù)不同的位置怎么將它們分類?
學生思考并在小組內(nèi)交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達;
有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線
2.學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂?shù)膬蓚角相等)
3學生根據(jù)觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關系 數(shù)量關系
教師提問:如果改變 的大小,會改變它與其它角的位置關系和數(shù)量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質
三.初步應用
練習:
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現(xiàn)象
四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數(shù)。
[鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數(shù)
[小結]
鄰補角、對頂角.
[作業(yè)]課本P9-1,2P10-7,8
【七年級數(shù)學教案】相關文章:
七年級下數(shù)學教案10-18
七年級初中數(shù)學教案02-13
七年級數(shù)學教案12-18
七年級數(shù)學教案11-09
七年級數(shù)學教案(精華)06-08
人教版七年級數(shù)學教案03-18
七年級數(shù)學教案最新10-29