午夜成人福利亚洲精品_亚洲熟妇AV无人区一区_亚洲午夜成人精品无码浪潮_极品熟妇无码AV在线少妇

八年級數(shù)學(xué)教案

時間:2024-11-05 07:49:58 八年級數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)教案(通用15篇)

  作為一位杰出的老師,時常需要用到教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。那么寫教案需要注意哪些問題呢?下面是小編整理的八年級數(shù)學(xué)教案,歡迎大家分享。

八年級數(shù)學(xué)教案(通用15篇)

八年級數(shù)學(xué)教案1

  菱形

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點):

  1.經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習(xí)慣;

  2.運用菱形的識別方法進行有關(guān)推理.

  補充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

  例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

  (1)試說明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線段EF的長;

  (3)當(dāng)矩形兩邊AB、BC具備怎樣的'關(guān)系時,四邊形AECG是菱形.

  課后續(xù)助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

  2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

  4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

 、徘笞C:ABF≌

 、迫魧⒄郫B的圖形恢復(fù)原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

八年級數(shù)學(xué)教案2

  教學(xué)目標(biāo):

  1、知識目標(biāo):

  (1)掌握已知三邊畫三角形的方法;

  (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

  (3)會添加較明顯的輔助線.

  2、能力目標(biāo):

  (1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

  (2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

  3、情感目標(biāo):

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.

  教學(xué)重點:SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。

  教學(xué)難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚三角形全等。

  教學(xué)用具:直尺,微機

  教學(xué)方法:自學(xué)輔導(dǎo)

  教學(xué)過程:

  1、新課引入

  投影顯示

  問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

  這個問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個元素――三條邊。

  2、公理的獲得

  問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

  讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)

  公理:有三邊對應(yīng)相等的`兩個三角形全等。

  應(yīng)用格式: (略)

  強調(diào)說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。

  (2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

  (3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系

  (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準(zhǔn)備,進行了溝通。

  (5)說明AAA與SSA不能判定三角形全等。

  3、公理的應(yīng)用

  (1) 講解例1。學(xué)生分析完成,教師注重完成后的點評。

  例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

  求證:AD⊥BC

  分析:(設(shè)問程序)

  (1)要證AD⊥BC只要證什么?

  (2)要證∠1= 只要證什么?

  (3)要證∠1=∠2只要證什么?

  (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

  證明:(略)

  (2)講解例2(投影例2 )

  例2已知:如圖AB=DC,AD=BC

  求證:∠A=∠C

  (1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

  (2)找學(xué)生代表口述證明思路。

  思路1:連接BD(如圖)

  證△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教師共同討論后,說明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫出證明,一名學(xué)生板書,教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

  例3如圖,已知AB=AC,DB=DC

  (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

  (2)若AD、BC連接交于點P,問AD、BC有何關(guān)系?證明你的結(jié)論。

  學(xué)生思考、分析,適當(dāng)點撥,找學(xué)生代表口述證明思路

  讓學(xué)生在練習(xí)本上寫出證明,然后選擇投影顯示。

  證明:(略)

  說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

  例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

  求證:AC=2AE.

  證明:(略)

  學(xué)生口述證明思路,教師強調(diào)說明:“中線”條件下的常規(guī)作輔助線法。

  5、課堂小結(jié):

  (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

  在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

  (2)三種方法的綜合運用

  讓學(xué)生自由表述,其它學(xué)生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

  6、布置作業(yè):

  a、書面作業(yè)P70#11、12

  b、上交作業(yè)P70#14 P71B組3

八年級數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  1、理解并掌握等腰三角形的判定定理及推論。

  2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系。

  教學(xué)重點:

  等腰三角形的判定定理及推論的運用。

  教學(xué)難點:

  正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的.判定定理證明線段的相等關(guān)系。

  教學(xué)過程:

  一、復(fù)習(xí)等腰三角形的性質(zhì)。

  二、新授:

  i提出問題,創(chuàng)設(shè)情境

  出示投影片、某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(b點)為b標(biāo),然后在這棵樹的正南方(南岸a點抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到c處時,測得∠acb為30°,這時,地質(zhì)專家測得ac的長度就可知河流寬度。

  學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”。

  ii引入新課

  1、由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△abc中,苦∠b=∠c,則ab=ac嗎?

  作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

  2、引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證。

  2、小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱)。

  強調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”。

  4、引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù)。

八年級數(shù)學(xué)教案4

  知識目標(biāo):

  理解變量與函數(shù)的概念以及相互之間的關(guān)系

  能力目標(biāo):

  增強對變量的理解

  情感目標(biāo):

  滲透事物是運動的,運動是有規(guī)律的辨證思想

  重點:

  變量與常量

  難點:

  對變量的判斷

  教學(xué)媒體:

  多媒體電腦,繩圈

  教學(xué)說明:

  本節(jié)滲透找變量之間的簡單關(guān)系,試列簡單關(guān)系式

  教學(xué)設(shè)計:

  引入:

  信息1:當(dāng)你坐在摩天輪上時,想一想,隨著時間的變化,你離開地面的高度是如何變化的?

  信息2:汽車以60km/h的速度勻速前進,行駛里程為skm,行駛的時間為th,先填寫下面的表格,在試用含t的式子表示s、

  t/m 1 2 3 4 5

  s/km

  新課:

  問題:

 。1)每張電影票的售價為10元,如果早場售出票150張,日場售出票205張,晚場售出票310張,三場電影的票房收入各多少元?設(shè)一場電影受出票x張,票房收入為y元,怎樣用含x的式子表示y?

  (2)在一根彈簧的下端懸掛中重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化規(guī)律,如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含重物質(zhì)量m(單位:kg)的式子表示受力后彈簧長度l(單位:cm)?

 。3)要畫一個面積為10cm2的`圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含圓面積s的式子表示圓的半徑r?

  (4)用10m長的繩子圍成長方形,試改變長方形的長度,觀察長方形的面積怎樣變化。記錄不同的長方形的長度值,計算相應(yīng)的長方形面積的值,探索它們的變化規(guī)律,設(shè)長方形的長為xm,面積為sm2,怎樣用含x的式子表示s?

  在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable)、數(shù)值始終不變的量為常量。

  指出上述問題中的變量和常量。

  范例:寫出下列各問題中所滿足的關(guān)系式,并指出各個關(guān)系式中,哪些量是變量,哪些量是常量?

 。1)用總長為60m的籬笆圍成矩形場地,求矩形的面積s(m2)與一邊長x(m)之間的關(guān)系式;

 。2)購買單價是0.4元的鉛筆,總金額y(元)與購買的鉛筆的數(shù)量n(支)的關(guān)系;

 。3)運動員在4000m一圈的跑道上訓(xùn)練,他跑一圈所用的時間t(s)與跑步的速度v(m/s)的關(guān)系;

 。4)銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x元本金與所得的本息和y(元)之間的關(guān)系。

  活動:

  1、分別指出下列各式中的常量與變量、

 。1)圓的面積公式s=πr2;

 。2)正方形的l=4a;

 。3)大米的單價為2.50元/千克,則購買的大米的數(shù)量x(kg)與金額與金額y的關(guān)系為y=2.5x、

  2、寫出下列問題的關(guān)系式,并指出不、常量和變量、

 。1)某種活期儲蓄的月利率為0、16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式、

 。2)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是s,求s與n之間的關(guān)系式、

  思考:

  怎樣列變量之間的關(guān)系式?

  小結(jié):

  變量與常量

  作業(yè):

  閱讀教材5頁,11、1、2函數(shù)

八年級數(shù)學(xué)教案5

  一、教材分析教材的地位和作用:

  本節(jié)內(nèi)容是第一課時《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

  二、學(xué)情分析

  八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實例和動手實踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實可行的。

  三、教學(xué)目標(biāo)及重點、難點的確定

  根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點、難點如下:

 。ㄒ唬┙虒W(xué)目標(biāo):

  1、知識技能

 。1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸、

 。2)理解并掌握軸對稱的概念,對稱軸;了解對稱點、

 。3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別、

  2、過程與方法目標(biāo)

  經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實踐能力、抽象思維和語言表達能力、

  3、情感、態(tài)度與價值觀

  通過對生活中數(shù)學(xué)問題的探究,進一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。

 。ǘ┙虒W(xué)重點:軸對稱圖形和軸對稱的有關(guān)概念、

 。ㄈ┙虒W(xué)難點:軸對稱圖形與軸對稱的聯(lián)系、區(qū)別

  四、教法和學(xué)法設(shè)計

  本節(jié)課根據(jù)教材內(nèi)容的特點和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:

  教法策略:采用以直觀演示法和實驗發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。

  學(xué)法策略:讓學(xué)生在“觀察————比較——操作——概括——檢驗——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

  輔助策略:我利用多媒體課件輔助教學(xué),適時呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強直觀效果,提高課堂效率

  五、說程序設(shè)計:

  新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實的有意義的,有利于學(xué)生進行觀察、試驗、猜測、驗證、推理與交流等數(shù)學(xué)活動。為了達到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進行了設(shè)計。

 。ㄒ唬、觀圖激趣、設(shè)疑導(dǎo)入。

  出示圖片,設(shè)計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“我們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

  [設(shè)計意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣。

 。ǘ、實踐探索、感悟特征、

  活動一(課件演示)觀察這些圖形有什么特點?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機,還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

  為了進一步認(rèn)識軸對稱圖形的特點又出示了一組練習(xí)

 。ň毩(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

  [設(shè)計意圖]通過這個練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

 。ň毩(xí)2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的'知識面。

 。ㄈ、動手操作、再度探索新知。

  將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。

  再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……之后再結(jié)合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念、并結(jié)合圖形加以認(rèn)識。

 。ㄋ模、鞏固練習(xí)、升華新知。

  出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

 。ㄕn件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系

  (五)、綜合練習(xí)、發(fā)展思維。

  1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

  2、判斷:

  生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。

 。1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

  3、像這樣寫法的漢字哪些是軸對稱圖形?

  口工用中由日直水清甲

 。ㄟ@幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計,不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

 。w納小結(jié)、布置作業(yè)

  [設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。作業(yè)布置要有層次,照顧學(xué)生個體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

  六、設(shè)計說明

  這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點、遵循學(xué)生的認(rèn)知規(guī)律。通過六個環(huán)節(jié)的教學(xué)設(shè)計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。

八年級數(shù)學(xué)教案6

  一、教學(xué)目標(biāo)

  1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

  2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

  3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  二、重點、難點和難點的突破方法:

  1、重點:認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

  2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  3、難點的突破方法:

  首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

  中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

  教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

  在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。

  三、例習(xí)題的意圖分析

  1、教材p143的例4的意圖

 。1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。

 。2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

  (3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。

  (4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。

  2、教材p145例5的意圖

  (1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

  (2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

 。3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

  四、課堂引入

  嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的.作用。

  五、例習(xí)題的分析

  教材p144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到。┑捻樞蚺帕小R虼,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

  教材p145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。

  六、隨堂練習(xí)

  1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

  1800.510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

  假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

  2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:

  1匹1、2匹1.5匹2匹

  3月12臺20臺8臺4臺

  4月16臺30臺14臺8臺

  根據(jù)表格回答問題:

  商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

  假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

  答案:1、(1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

  2、(1)1、2匹(2)通過觀察可知1、2匹的銷售,所以要多進1、2匹,由于資金有限就要少進2匹空調(diào)。

  七、課后練習(xí)

  1、數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

  2、一組數(shù)據(jù)23、27、20、18、x、12,它的中位數(shù)是21,則x的值是、

  3、數(shù)據(jù)92、96、98、100、x的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是()

  a、97、96 b、96、96、4 c、96、97 d、98、97

  4、如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2.5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()

  a、24、25 b、23、24 c、25、25 d、23、25

  5、隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

  溫度(℃)—8 —1 7 15 21 24 30

  天數(shù)3 5 5 7 6 2 2

  請你根據(jù)上述數(shù)據(jù)回答問題:

  (1)、該組數(shù)據(jù)的中位數(shù)是什么?

 。2)、若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

  答案:1、 9;2、 22;3、b;4、c;5、(1)15、(2)約97天

八年級數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  知識目標(biāo):

  1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

  2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。

  能力目標(biāo):

  1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。

  2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。

  情感目標(biāo):

  1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

  2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

  教學(xué)重點:

  掌握函數(shù)概念。

  判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

  能把實際問題抽象概括為函數(shù)問題。

  教學(xué)難點:

  理解函數(shù)的概念。

  能把實際問題抽象概括為函數(shù)問題。

  教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

  『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過嗎?

  ……

  『師』:當(dāng)你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

  『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。

  『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的`關(guān)系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?

  『生』:確定。

  『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

  『生』:研究的對象有兩個,是時間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識世界。下面我們就去研究一些有關(guān)變量的問題。

  二、新課學(xué)習(xí)

  做一做

 。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

  填寫下表:

  層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

  『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

 。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

 、儆嬎惝(dāng)fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?

 、诮o定一個V值,你能求出相應(yīng)的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

  『生』:相同點是:這三個問題中都研究了兩個變量。

  不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。

  『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。

  函數(shù)的概念

  在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。

  一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  三、隨堂練習(xí)

  書P152頁 隨堂練習(xí)1、2、3

  四、本課小結(jié)

  初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

  在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。

  函數(shù)的三種表達式:

  圖象;(2)表格;(3)關(guān)系式。

  五、探究活動

  為了加強公民的節(jié)水意識,某市制定了如下用水收費標(biāo)準(zhǔn):每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

 。ù鸢福篩=1.8x-6或)

  六、課后作業(yè)

  習(xí)題6.1

八年級數(shù)學(xué)教案8

  一、教學(xué)目標(biāo)

 、俳(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨立思考、集體協(xié)作的能力。

  ②理解整式除法的算理,發(fā)展有條理的思考及表達能力。

  二、教學(xué)重點與難點

  重點:整式除法的運算法則及其運用。

  難點:整式除法的運算法則的推導(dǎo)和理解,尤其是單項式除以單項式的運算法則。

  三、教學(xué)準(zhǔn)備

  卡片及多媒體課件。

  四、教學(xué)設(shè)計

  (一)情境引入

  教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

  重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

  注:教科書從實際問題引入單項式的除法運算,學(xué)生在探索這個問題的過程中,將自然地體會到學(xué)習(xí)單項式的除法運算的必要性,了解數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。

  (二)探究新知

 。1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?

 。2)你能利用(1)中的方法計算下列各式嗎?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

 。3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?

  注:教師可以鼓勵學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。

  單項式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進行。探究活動的安排,是使學(xué)生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分?jǐn)?shù)的約分進行。在這些活動過程中,學(xué)生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強調(diào)的。

 。ㄈw納法則

  單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的.指數(shù)作為商的一個因式。

  注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語言表達自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

 。ㄋ模⿷(yīng)用新知

  例2計算:

 。1)28x4y2÷7x3y;

 。2)—5a5b3c÷15a4b。

  首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學(xué)生口述,教師板書的形式完成?谑龊桶鍟紤(yīng)注意展示法則的應(yīng)用,計算過程要詳盡,使學(xué)生盡快熟悉法則。

  注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學(xué)生來講,難免會出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問題。

  鞏固新知教科書第162頁練習(xí)1及練習(xí)2。

  學(xué)生自己嘗試完成計算題,同桌交流。

  注:在獨立解題和同伴的相互交流過程中讓學(xué)生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動參與學(xué)習(xí)的習(xí)慣。

 。ㄎ澹┳鳂I(yè)

  1、必做題:教科書第164頁習(xí)題15。3第1題;第2題。

  2、選做題:教科書第164頁習(xí)題15。3第8題

八年級數(shù)學(xué)教案9

  課題:一元二次方程實數(shù)根錯例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。

  【典型例題】

  例1 下列方程中兩實數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

  例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (2002山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。

  錯解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的'前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

  (1)求k的取值范圍;

 。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。

  (2)存在。

  如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

  ∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

 。1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

  解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

 。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。

  又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

  1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

  2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

  求證:關(guān)于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

  考題匯編

  1、(2000年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(2001年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個根為1,求m的值。

 。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

  3、(2002年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(2003年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學(xué)教案10

  教學(xué)目標(biāo):

  1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

  2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題.

  3.培養(yǎng)用類比、逆向聯(lián)想及運動的思維方法來研究問題.

  重點、難點

  1.重點:平行四邊形的判定方法及應(yīng)用.

  2.難點:平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.

  3.難點的突破方法:

  平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時它又是后面進一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說理的良好素材.本節(jié)課的教學(xué)重點為平行四邊形的判別方法.在本課中,可以探索活動為載體,并將論證作為探索活動的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡單推理有機融合,達到突出重點、分散難點的目的.

 。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個方法來證明.

 。2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對角線兩方面進行記憶.要注意:

  ①本教材沒有把用角來作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補充;

 、诒竟(jié)課只介紹前兩個判定方法.

 。3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動有趣的問題情境,開展有效的數(shù)學(xué)活動,如通過欣賞圖片及識別圖片中的平行四邊形,使學(xué)生建立對平行四邊形的直覺認(rèn)識.并復(fù)習(xí)平行四邊形的定義,建立新舊知識間的相互聯(lián)系.接著提出問題:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?從而組織學(xué)生主動參與、勤于動手、積極思考,使他們在自主探究與合作交流的過程中,從整體上把握“平行四邊形的判別”的方法.

  然后利用學(xué)生手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件.

  在學(xué)生拼圖的活動中,教師可以以問題串的形式展開對平行四邊形判別方法的探討,讓學(xué)生在問題解決中,實現(xiàn)對平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說理及簡單推理的能力.

 。4)從本節(jié)開始,就應(yīng)讓學(xué)生直接運用平行四邊形的性質(zhì)和判定去解決問題,凡是可以用平行四邊形知識證明的問題,不要再回到用三角形全等證明.應(yīng)該對學(xué)生提出這個要求.

 。5)平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質(zhì)去解決某些問題.例如,求角的度數(shù),線段的長度,證明角相等或線段相等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.

 。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識,這些知識是本章的'重點內(nèi)容,要使學(xué)生熟練地掌握這些知識.

  例題的意圖分析

  本節(jié)課安排了3個例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運用,此題最好先讓學(xué)生說出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補充的題目,其目的就是讓學(xué)生能靈活和綜合地運用平行四邊形的判定方法和性質(zhì)來解決問題.例3是一道拼圖題,教學(xué)時,可以讓學(xué)生動起來,邊拼圖邊說明道理,即可以提高學(xué)生的動手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個不等邊三角形拼一個如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說明理由.

  課堂引入

  1.欣賞圖片、提出問題.

  展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?

  2.【探究】:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

  讓學(xué)生利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

  (1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?

  (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

  (3)你能說出你的做法及其道理嗎?

  (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

 。5)你還能找出其他方法嗎?

  從探究中得到:

  平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

  平行四邊形判定方法2 對角線互相平分的四邊形是平行四邊形。

  例習(xí)題分析

  1(教材P96例3)已知:如圖ABCD的對角線AC、BD交于點O,E、F是AC上的兩點,并且AE=CF.

  求證:四邊形BFDE是平行四邊形.

  分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來證明.

  (證明過程參看教材)

  問;你還有其它的證明方法嗎?比較一下,哪種證明方法簡單.

  2(補充) 已知:如圖,A′B′∥BA,B′C′∥CB, C′A′∥AC.

  求證:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

  (2) △ABC的頂點分別是△B′C′A′各邊的中點.

  證明:(1)∵A′B′∥BA,C′B′∥BC,

  ∴四邊形ABCB′是平行四邊形.

  ∴ ∠ABC=∠B′(平行四邊形的對角相等).

  同理∠CAB=∠A′,∠BCA=∠C′.

  (2) 由(1)證得四邊形ABCB′是平行四邊形.同理,四邊形ABA′C是平行四邊形.

  ∴ AB=B′C, AB=A′C(平行四邊形的對邊相等).

  ∴ B′C=A′C.

  同理 B′A=C′A, A′B=C′B.

  ∴ △ABC的頂點A、B、C分別是△B′C′A′的邊B′C′、C′A′、A′B′的中點.

  3(補充)小明用手中六個全等的正三角形做拼圖游戲時,拼成一個六邊形.你能在圖中找出所有的平行四邊形嗎?并說說你的理由.

  解:有6個平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

  理由是:因為正△ABO≌正△AOF,所以AB=BO,OF=FA.根據(jù) “兩組對邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形.其它五個同理.

  隨堂練習(xí)

  1.如圖,在四邊形ABCD中,AC、BD相交于點O,

 。1)若AD=8cm,AB=4cm,那么當(dāng)BC=____cm,CD=____cm時,四邊形ABCD為平行四邊形;

 。2)若AC=10cm,BD=8cm,那么當(dāng)AO=___cm,DO=___cm時,四邊形ABCD為平行四邊形.

  2.已知:如圖,ABCD中,點E、F分別在CD、AB上,DF∥BE,EF交BD于點O.求證:EO=OF.

  3.靈活運用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個圖形由(n+1)個等邊三角形拼成,通過觀察,分析發(fā)現(xiàn):

 、俚4個圖形中平行四邊形的個數(shù)為_____.

 。6個)

 、诘8個圖形中平行四邊形的個數(shù)為_____.

 。20個)

  課后練習(xí)

  1.(選擇)下列條件中能判斷四邊形是平行四邊形的是( ).

 。ˋ)對角線互相垂直 (B)對角線相等

 。–)對角線互相垂直且相等 (D)對角線互相平分

  2.已知:如圖,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

  求證:BE=CF

八年級數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1、知識目標(biāo):探索圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合)。

  2、能力目標(biāo):

  ①經(jīng)歷對具有旋轉(zhuǎn)特征的圖形進行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。

  ②能夠按要求作出簡單平面圖形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。

  3、情感體驗點:培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點與難點:

  重點:圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合);

  難點:綜合利用各種變換關(guān)系觀察圖形的形成。

  疑點:基本圖案不同,形成方式不同。

  教學(xué)方法:

  新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。

  教學(xué)過程設(shè)計:

  1、情境導(dǎo)入

  播放自制圖形形成的影片,如圖351。

  2、充分利用本課時引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經(jīng)過適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對稱嗎?還有其它方式嗎?

  問題本身為學(xué)生創(chuàng)設(shè)了一個探究圖形之間變化關(guān)系的情景,圖形雖十簡單,但變換方式綜合性強,可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進行適當(dāng)歸納小結(jié):

  (1)整個圖形可以看做是由一個十字組成部分通過連續(xù)七次平移前后的圖形共同組成;

  (2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;

  (3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;

  (4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。

  (學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)

  3、通過上述問題的.討論,我們看到圖形的平移、旋轉(zhuǎn),軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計圖案的主要手段。

  4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?

  學(xué)生議論或動手操作會發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時,要充分利用它們各自的性質(zhì)、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進一步讓學(xué)生思考,從而得到結(jié)論是可能的。

  5、例1、怎樣將圖353中的甲圖變成乙圖案?

  通過相對簡單活潑的問題,讓學(xué)生能運用圖形變換的幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)

  例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

  留給學(xué)生充足的時間討論交流。

  (師):哪位同學(xué)有好好方法,請告訴大家!

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時針方向旋轉(zhuǎn)900 。

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時針方向旋轉(zhuǎn)2700 。

  明確可以通過不同的辦法達到同樣的效果,激勵學(xué)生動手動腦。

  5、學(xué)習(xí)小結(jié)

  (1)內(nèi)容總結(jié)

  兩個圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對稱)

  (2)方法歸納

  ①了解并知道圖案變化的一般方法。

  ②圖案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的習(xí)慣。

  6、目標(biāo)檢測

  圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經(jīng)過怎樣的變換而得到?

  延伸拓展:

  1、鏈接生活

  鏈接一:奧運會的五環(huán)旗圖案是大家熟悉的圖案,請你根據(jù)所學(xué)知識分析它的形成。(用課本知識解釋生活中的圖形變換)

  鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請你用所學(xué)知識再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進一步體會數(shù)學(xué)與生活的密切聯(lián)系)

  實踐探索:

 、賹嵺`活動列舉實例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對稱及其組合)

 、陟柟叹毩(xí)課本74頁中的習(xí)題3.6。

  板書設(shè)計:

  3.5它們是怎樣變過來的。

  軸對稱、平移、旋轉(zhuǎn)的性質(zhì)例題;

  圖形之間的變換關(guān)系;

八年級數(shù)學(xué)教案12

  【教學(xué)目標(biāo)】

  1、了解三角形的中位線的概念

  2、了解三角形的中位線的性質(zhì)

  3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用

  【教學(xué)重點、難點】

  重點:三角形的中位線定理。

  難點:三角形的中位線定理的證明中添加輔助線的思想方法。

  【教學(xué)過程】

 。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

  1、如圖,為了測量一個池塘的寬BC,在池塘一側(cè)的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

  2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

 。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

  (2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

  3、引導(dǎo)學(xué)生概括出中位線的概念。

  問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

  啟發(fā)學(xué)生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

  4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

 。ǘ、師生互動,探究新知

  1、證明你的.猜想

  引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。

  (已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

  啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

  啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補短)

  學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強調(diào)有其他證法。

  證明:如圖,以點E為旋轉(zhuǎn)中心,把⊿ADE繞點E,按順時針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

  ∴DF∥BC(根據(jù)什么?),

  ∴DE 1/2BC

  2、啟發(fā)學(xué)生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

 。ㄈ⿲W(xué)以致用、落實新知

  1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點所得的三角形周長是多少?

  2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

  3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點。

  求證:四邊形EFGH是平行四邊形。

  啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點,你會聯(lián)想到什么圖形?

  啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

  證明:如圖,連接AC。

  ∵EF是⊿ABC的中位線,

  ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

  挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

 。ㄋ模⿲W(xué)生練習(xí),鞏固新知

  1、請回答引例中的問題(1)

  2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點。求證:∠PNM=∠PMN

 。ㄎ澹┬〗Y(jié)回顧,反思提高

  今天你學(xué)到了什么?還有什么困惑?

八年級數(shù)學(xué)教案13

  一、目標(biāo)要求

  1.理解掌握分式乘除法運算法則。

  2.能熟練地運用分式乘除法運算法則進行分式的乘除運算。

  二、重點難點

  重點是分式乘除法法則。

  難點是分子或分母為多項式的分式的乘除法。

  1.分式的乘除法法則:

  (1)分式乘以分式,用分子的積做積的分子,分母的積做積的.分母,用式子表示為=;

 。2)分式除以分式,把除式的分子、分母顛倒位置后與被除式相乘,用式子表示為÷ = = 。

  2.遇到分式的乘方、乘、除法的混合運算,首先要注意運算順序,即先乘方、后乘除,而除法運算又應(yīng)根據(jù)其法則轉(zhuǎn)化為乘法運算;其次要注意運算符號法則與分式的符號法則,最后在約分時要注意分子與分母是為積的形式,若不是則應(yīng)進行因式分解。

  3.分式的運算中不能去分母,因為去分母是等式的性質(zhì),而分式不是等式,分式的運算只是對分式進行恒等變形。

  三、解題方法指導(dǎo)

  【例1】計算:

 。1)3x2y (-);

  (2)6x3y2÷(-) ÷x2;

 。3)( )÷(-)(-)

  分析:分式的分子與分母是單項式的乘除,先將除法轉(zhuǎn)化為乘法,根據(jù)分式的乘法法則,先確定結(jié)果的符號,然后將系數(shù)相乘除,其余的因式按指數(shù)法則運算。

  解:

 。1)原式=-3x2y =-1。

 。2)原式=6x3y2(-)

  =-6x3y2 =-。

 。3)原式=(-)(-)(-)

  =-=-。

  【例2】計算:

 。1)÷ 。

 。2)÷(x+3)

  分析:分式的乘除混合運算,首先將除法轉(zhuǎn)化為乘法,將分子、分母因式分解后進行約分。

  解:

 。1)原式=

  (2)原式= ÷(x+3)

  注意:

 。1)分式的分子、分母是多項式時,一般先按某一字母的降冪排列,再分解因式,并在運算過程中約分,使運算簡化。

 。2)分式除法中,除式是整式時,可以看作分母是1的式子。要注意乘除法是屬于同一級運算,必須嚴(yán)格按從左到右的順序。

  四、激活思維訓(xùn)練

  ▲知識點:分式的乘除法運算

  【例】已知m=,求代數(shù)式÷的值。

  分析:首先應(yīng)將代數(shù)式化簡,然后把已知條件變形后代入,即可求出其值。

  解:÷ =

  =(m+2)(m-2)=m2-4。

  ∵ m=,∴ m2=1。

  ∴原式=m2-4=1-4=-3。

  五、基礎(chǔ)知識檢測

  六、創(chuàng)新能力運用

  參考答案

  【基礎(chǔ)知識檢測】

  1.(1)分子的積做分子、分母的積做分母、分子、分母,相乘

  2.(1)D(2)D

八年級數(shù)學(xué)教案14

 一、教學(xué)目標(biāo)

  知識與技能

  1、了解立方根的概念,初步學(xué)會用根號表示一個數(shù)的立方根、

  2、了解開立方與立方互為逆運算,會用立方運算求某些數(shù)的立方根、

  過程與方法

  1、讓學(xué)生體會一個數(shù)的立方根的惟一性、

  2、培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。

  情感態(tài)度與價值觀

  通過立方根符號的引入體會數(shù)學(xué)的簡潔美。

  二、重點難點

  重點

  立方根的概念和求法。

  難點

  立方根與平方根的區(qū)別,立方根的求法

  三、學(xué)情分析

  前面已經(jīng)學(xué)過了平方根的知識,由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進行立方根知識的學(xué)習(xí),讓學(xué)生感覺到其實立方根知識并不難,可以與平方根知識對比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進行適當(dāng)?shù)姆此迹诜此贾锌创c理解新知識和新問題,會更理性和全面,會有更大的進步。

  四、教學(xué)過程設(shè)計

  教學(xué)環(huán)節(jié)問題設(shè)計師生活動備注

  情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應(yīng)該是多少?

  設(shè)這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27、

  因為=27,所以x=3、即這種包裝箱的.邊長應(yīng)為3m

  歸納:

  立方根的概念:

  創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。

  通過具體問題得出立方根的概念

  探究一:

  根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點?

  因為(),所以0、125的立方根是()

  因為(),所以—8的立方根是()

  因為(),所以—0、125的立方根是()

  因為(),所以0的立方根是()

  一個正數(shù)有一個正的立方根

  0有一個立方根,是它本身

  一個負(fù)數(shù)有一個負(fù)的立方根

  任何數(shù)都有唯一的立方根

  總結(jié)歸納

  一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。、

  探究二:

  因為所以=

  因為,所以=總結(jié):

  利用開立方和立方互為逆運算關(guān)系,求一個數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負(fù)數(shù)的立方根,可以先求出這個負(fù)數(shù)的絕對值的立方根,再取其相反數(shù),即。

八年級數(shù)學(xué)教案15

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點、難點

  1、重點:理解分式的基本性質(zhì)。

  2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點與突破方法

  教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的.基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2、P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

  3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

  四、課堂引入

  1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2。填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3。約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4。通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級《函數(shù)》數(shù)學(xué)教案04-03

(經(jīng)典)八年級數(shù)學(xué)教案06-25

八年級數(shù)學(xué)教案12-09

【薦】八年級數(shù)學(xué)教案12-03

八年級數(shù)學(xué)教案【熱門】12-03

八年級數(shù)學(xué)教案【推薦】12-04

八年級數(shù)學(xué)教案【精】12-04

八年級下冊數(shù)學(xué)教案01-01

八年級數(shù)學(xué)教案人教版01-03