午夜成人福利亚洲精品_亚洲熟妇AV无人区一区_亚洲午夜成人精品无码浪潮_极品熟妇无码AV在线少妇

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>初中數(shù)學教案

初中數(shù)學教案

時間:2022-12-31 09:35:17 數(shù)學教案 我要投稿

初中數(shù)學教案(匯編15篇)

  作為一名默默奉獻的教育工作者,時常會需要準備好教案,教案是教學活動的依據(jù),有著重要的地位。那么問題來了,教案應該怎么寫?下面是小編為大家收集的初中數(shù)學教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學教案(匯編15篇)

初中數(shù)學教案1

  這節(jié)課的內(nèi)容是義務教育課程標準教材數(shù)學九年級下冊銳角三角函數(shù)——正弦。我將從以下幾個方面來就本節(jié)課的教學進行解說。

  一、教材分析

  教材所處的地位及作用:

  本章是在學生已學了一次函數(shù)、反比例函數(shù)、二次函數(shù)以及相似形的基礎上進行的,它反映的不是數(shù)值與數(shù)值的對應關系,而是角度與數(shù)值之間的對應關系,這對學生來說是個全新的領域。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎.

  二、學情分析

  1、九年級學生的思維活躍,接受能力較強,具備了一定的數(shù)學探究活動經(jīng)歷和應用數(shù)學的意識。

  2、學生已經(jīng)掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學任務打下了基礎,學生要得出銳角與比值之間的對應關系,這種對應關系不同于以前學習的數(shù)值與數(shù)值之間的對應關系,因此對學生而言建立這種對應關系有一定困難。

  三、教學目標

  1、理解銳角正弦的意義,了解銳角與銳角正弦值之間的一一對應關系,進一步體會函數(shù)的變化與對應的思想;

  2、會根據(jù)銳角正弦的意義解決直角三角形中已知邊長求銳角正弦,以及已知正弦值和一邊長求其它邊長的問題;

  3、經(jīng)歷銳角正弦意義的探索過程,體會從特殊到一般的研究問題的思路和數(shù)形結合的思想方法;

  4、經(jīng)歷由實際問題引發(fā)出對正弦函數(shù)討論的過程,培養(yǎng)學生觀察生活、發(fā)現(xiàn)問題、研究問題的能力。

  四、重點、難點

  1、重點:銳角正弦的定義及應用;

  2、難點:理解銳角正弦是銳角與邊的比值之間的函數(shù)關系.

  3、難點突破方法:由特殊角入手開展討論,自然過度到一般角;從具體情境抽象出正弦的概念,并結合多個實例從不同角度深化理解。

  五、教法及學法

  本節(jié)課采用情境引導和探究發(fā)現(xiàn)教學法,通過適宜的問題情境引發(fā)新的認知沖突,建立知識間的聯(lián)系。同時采用多媒體輔助教學,以直觀生動地呈現(xiàn)教學素材,從而更好地激發(fā)學生的學習興趣,增大教學容量,提高教學效率。

  六、教學過程

  為了實現(xiàn)本節(jié)的.教學目標,教學過程分為以下六個環(huán)節(jié):

  (一)復習舊知,情境引入(二)合作探究,獲得新知:(三)鞏固訓練,落實雙基

 。ㄋ模⿵娀岣,培養(yǎng)能力(五)小結歸納,拓展深化(六)反饋練習,自主評價。

  下面就幾個主要環(huán)節(jié)進行解說

 。ㄒ唬⿵土暸f知,情境引入

 。ǘ┫茸寣W生回顧直角三角形知識,再從鋪設水管引入30°的直角三角形中的邊與角的關聯(lián)。

 。ǘ┖献魈骄,獲得新知:

  先讓學生猜想,再利用幾何畫板演示,在直角三角形中,任意角度的銳角的對邊和斜邊的比和這個角的關系。得出結論:

  當∠A的度數(shù)一定時,∠A的對邊和斜邊的比值是一個定值。這個比值隨著角度的變化而變化,當角度一定時,有唯一和它對應的比值。所以∠A的對邊和斜邊的比值是關于∠A度數(shù)的函數(shù)。

  再引出課題和正弦概念,給出正弦的含義和表示方法。認識幾個特殊角的正弦值。

 。ㄈ╈柟逃柧

  講解一道求正弦值的例題。

 。ㄋ模⿵娀岣,培養(yǎng)能力

  出示三道提高題,第一道是關于直接利用正弦值求斜邊的題,然后進行變式,第二題是關于不是直角三角形中求正弦的題,第三題是關于用不同的方法求一個銳角的正弦值。

 。ㄎ澹┬〗Y歸納,拓展深化

初中數(shù)學教案2

  八、 板書 設計

  6.2? 不等式的解集

  一、1.不等式的解集:一般地,一個含有未知數(shù)的不等式的所有的解組成這個不等式的解的.集合,簡稱不等式的解集.

  2.解不等式:求不等式解的過程

  二、在數(shù)軸上表示不等式的解集

  1.    2.

  三、注意:(1)“ · ”與“ °”;(2)“左邊部分”與“右邊部分”.

初中數(shù)學教案3

  教學目標:

  (一)知識與技能

  理解單項式及單項式系數(shù)、次數(shù)的概念;能準確迅速地確定一個單項式的系數(shù)和次數(shù);會用含字母的式子表示實際問題中的數(shù)量關系。

  (二)過程與方法

  1.在經(jīng)歷用字母表示數(shù)量關系的過程中,發(fā)展符號感;

  2. 通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力

  (三)情感態(tài)度價值觀

  1.通過豐富多彩的現(xiàn)實情景,讓學生經(jīng)歷從具體問題中抽象出數(shù)量關系,在解決問題中了解數(shù)學的價值,增長“用數(shù)學”的信心.

  2.通過用含字母的式子描述現(xiàn)實世界中的數(shù)量關系,認識到它是解決實際問題的重要數(shù)學工具之一。

  教學重、難點:

  重點:單項式及單項式系數(shù)、次數(shù)的概念。

  難點:單項式次數(shù)的概念;單項式的書寫格式及注意點。

  教學方法:

  引導——探究式

  在感性材料的基礎上,學生自主探究現(xiàn)實情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.

  教具準備:

  多媒體課件、小黑板.

  教學過程:

  一、 創(chuàng)設情境,引入新課

  出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向?qū)W生介紹青藏鐵路所創(chuàng)造的歷史之最。

  情境問題:

  青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

  設計意圖:從學生熟悉的情境出發(fā),創(chuàng)設情境,讓學生感受青藏鐵路的偉大成就,激發(fā)

  愛國主義情感,得到一次情感教育。

  解:根據(jù)路程、速度、時間之間的關系:路程=速度×時間

  2小時行駛的路程是:100×2=200(千米)

  3小時行駛的路程是:100×3=300(千米)

  t小時行駛的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出現(xiàn)乘號,通常將乘號寫作“ · ”或省略不寫。

  如:100×a可以寫成100a或100a。

  代數(shù)式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。

  代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系,本節(jié)我們就來學習最基本也是最重要的一類代數(shù)式整式。

  設計意圖:從學生已有的數(shù)學經(jīng)驗:路程=速度×時間出發(fā),建立新舊知識之間的`聯(lián)系

  讓學生歷一個從一般到特殊再到一般的認識過程,發(fā)展學生的認知觀念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。

  1、邊長為a的正方體的表面積是__,體積是__.

  2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。

  3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。

  4、數(shù)n的相反數(shù)是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它們有什么共同的特點?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  單項式:數(shù)與字母、字母與字母的乘積。

  注意:單獨的一個數(shù)或字母也是單項式。

  設計意圖:從熟悉的實際背景出發(fā),充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,獲得數(shù)學猜想和數(shù)學經(jīng)驗,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。

  火眼金睛

  下列各代數(shù)式中哪些是單項式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  設計意圖:加強學生對不同形式的單項式的直觀認識。

  解剖單項式

  系數(shù):單項式中的數(shù)字因數(shù)。

  如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的系數(shù)是 。

  次數(shù):一個單項式中的所有字母的指數(shù)的和。

  如:-3x的次數(shù)是 ,ab的次數(shù)是 。

  小試身手

  單項式 2a 2 -1.2h xy2 -t2 -32x2y

  系數(shù)

  次數(shù)

  設計意圖:了解學生對單項式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進一步鞏固概念。

  單項式的注意點:

  (1)數(shù)與字母相乘時,數(shù)應寫在字母的___,且乘號可_________;

  (2)帶分數(shù)作為系數(shù)時,應改寫成_______的形式;

  (3)式子中若出現(xiàn)相除時,應把除號寫成____的形式;

  (4)把“1”或“-1”作為項的系數(shù)時,“1”可以__不寫。

  行家看門道

 、1x ②-1x

 、踑×3 ④a÷2

 、 ⑥m的系數(shù)為1,次數(shù)為0

 、 的系數(shù)為2,次數(shù)為2

  設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。

  三、例題講解,鞏固新知

  例1:用單項式填空,并指出它們的系數(shù)和次數(shù):

  (1)每包書有12冊,n包書有 冊;

  (2)底邊長為a,高為h的三角形的面積 ;

  (3)一個長方體的長和寬都是a,高是h,它的體積是 ;

  (4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價

  為 元;

  (5)一個長方形的長0.9,寬是a,這個長方形的面積是 .

  解:(1)12n,它的系數(shù)是12,次數(shù)是1

  (2) ,它的系數(shù)是 , 次數(shù)是2;

  (3)a2h,它的系數(shù)是1,次數(shù)是3;

  (4)0.9a,它的系數(shù)是0.9,次數(shù)是1;

  (5)0.9a,它的系數(shù)是0.9,次數(shù)是1。

  設計意圖:學生能用單項式表示簡單的實際問題中的數(shù)量關系,并進一步鞏固單項式的系數(shù)、次數(shù)的概念。

  試一試

  你還能賦予0.9a一個含義嗎?

  設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發(fā)散學生思維。

  大膽嘗試

  寫出一個單項式,使它的系數(shù)是2,次數(shù)是3.

  設計意圖:充分發(fā)揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發(fā)他們的學習興趣。

  四、拓展提高

  嘗試應用

  用單項式填空,并指出它們的系數(shù)和次數(shù):

  (1)全校學生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;

  (2)一輛長途汽車從楊柳村出發(fā),3小時后到達相距s千米的溪河鎮(zhèn),這輛長途汽車的平均速度是 ;

  (3)產(chǎn)量由m千克增長10%,就達到 千克;

  設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數(shù)、次數(shù)的概念。

  能力提升

  1、已知-xay是關于x、y的三次單項式,那么a= ,b= .

  2、若-ax2yb+1是關于x、y的五次單項式,且系數(shù)為-3,則a= ,b= .

  設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。

  五、小結:

  本節(jié)課你感受到了嗎?

  生活中處處有數(shù)學

  本節(jié)課我們學了什么?你能說說你的收獲嗎?

  1、單項式的概念: 數(shù)與字母、字母與字母的乘積。

  2、單項式的系數(shù)、次數(shù)的概念。

  系數(shù):單項中的數(shù)字因數(shù);

  次數(shù):單項中所有字母的指數(shù)和。

  3、會用單項式表示實際問題中的數(shù)量關系,注意列式時式子要規(guī)范書寫。

  設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數(shù)學活動經(jīng)驗,促進學生形成良好的心理品質(zhì)。

  結束寄語

  悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!

  設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。

  六、板書設計

  2.1 整式

  單項式概念 探究 例1 多

  單項式的系數(shù)概念 觀察交流 嘗試應用 媒

  單項式的次數(shù)概念 能力提升 體

  七、作業(yè):

  1.作業(yè)本(必做)。

  2. 請下面圖片設計一個故事情境,要求其中包含的數(shù)量關系能夠用單項式表示,并且指出它們的系數(shù)和次數(shù)(選做)。

  設計意圖:布置分層作業(yè),既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識。

  八、設計理念:

  本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。

  針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發(fā)引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,同時注重培養(yǎng)學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。

初中數(shù)學教案4

  教學建議

  知識結構

  重難點分析

  本節(jié)的重點是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學習的正方形的基礎。

  本節(jié)的難點是性質(zhì)的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。

  教法建議

  根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:

  1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

  2.在現(xiàn)實中的實例較多,在講解的性質(zhì)和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質(zhì)和判定,既增加了學生的參與感又鞏固了所學的知識.

  3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

  4.在對性質(zhì)的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.

  5.由于和的性質(zhì)定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

  6.在性質(zhì)應用講解中,為便于理解掌握,教師要注意題目的層次安排。

  一、教學目標

  1.掌握概念,知道與平行四邊形的關系.

  2.掌握的性質(zhì).

  3.通過運用知識解決具體問題,提高分析能力和觀察能力.

  4.通過教具的演示培養(yǎng)學生的學習興趣.

  5.根據(jù)平行四邊形與矩形、的從屬關系,通過畫圖向?qū)W生滲透集合思想.

  6.通過性質(zhì)的學習,體會的圖形美.

  二、教法設計

  觀察分析討論相結合的方法

  三、重點·難點·疑點及解決辦法

  1.教學重點:的性質(zhì)定理.

  2.教學難點:把的`性質(zhì)和直角三角形的知識綜合應用.

  3.疑點:與矩形的性質(zhì)的區(qū)別.

  四、課時安排

  1課時

  五、教具學具準備

  教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

  六、師生互動活動設計

  教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

  七、教學步驟

  【復習提問】

  1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?

  2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.

  3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.

  【引入新課】

  我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.

  【講解新課】

  1.定義:有一組鄰邊相等的平行四邊形叫做.

  講解這個定義時,要抓住概念的本質(zhì),應突出兩條:

 。1)強調(diào)是平行四邊形.

 。2)一組鄰邊相等.

  2.的性質(zhì):

  教師強調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).

  下面研究的性質(zhì):

  師:同學們根據(jù)的定義結合圖形猜一下有什么性質(zhì)(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).

  生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.

  性質(zhì)定理1:的四條邊都相等.

  由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到

  性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.

  引導學生完成定理的規(guī)范證明.

  師:觀察右圖,被對角線分成的四個直角三角形有什么關系?

  生:全等.

  師:它們的底和高和兩條對角線有什么關系?

  生:分別是兩條對角線的一半.

  師:如果設的兩條對角線分別為、,則的面積是什么?

  生:

  教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.

  例2已知:如右圖,是△的角平分線,交于,交于.

  求證:四邊形是.

 。ㄒ龑W生用定義來判定.)

  例3已知的邊長為,,對角線,相交于點,如右圖,求這個的對角線長和面積.

 。1)按教材的方法求面積.

 。2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.

  【總結、擴展】

  1.小結:(打出投影)(圖4)

 。1)、平行四邊形、四邊形的從屬關系:

 。2)性質(zhì):圖5

 、倬哂衅叫兴倪呅蔚乃行再|(zhì).

 、谔赜行再|(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.

  八、布置作業(yè)

  教材P158中6、7、8,P196中10

  九、板書設計

  標題

  定義……

  性質(zhì)例2…… 小結:

  性質(zhì)定理1:……例3…… ……

  性質(zhì)定理2:……

  十、隨堂練習

  教材P151中1、2、3

  補充

  1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.

  2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.

初中數(shù)學教案5

  教學目標:

  1、理解切線的判定定理,并學會運用。

  2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

  教學重點:切線的判定定理和切線判定的方法。

  教學難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一.

  教學過程:

  一、復習提問

  【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?

  問題2.直線和圓有幾種位置關系?

  問題3.如何判定直線l是⊙O的切線?

  啟發(fā):(1)直線l和⊙O的公共點有幾個?

 。2)圓心O到直線L的距離與半徑的數(shù)量關系 如何?

  學生答完后,教師強調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)

  再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學的“切線的判定定理”(板書課題)

  二、引入新課內(nèi)容

  【學生】命題:經(jīng)過半徑的在圓上的端點且垂直于半 徑的直線是圓的切線。

  證明定理:啟發(fā)學生分清命題的題設和結論,寫出已 知、求證,分析證明思路,閱讀課本P60。

  定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

  定理的證明:已知:直線l經(jīng)過半徑OA的'外端點A,直線l⊥OA,

  求證:直線l是⊙O的切線

  證明:略

  定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A

  ∴直線l為⊙O的切線。

  是非題:

  (1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )

 。2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )

  三、例題講解

  例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。

  求證:直線AB是⊙O的切線。

  引導學生分析:由于AB過⊙O上的點C,所以連結OC,只要證明AB⊥OC即可。

  證明:連結OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直線AB經(jīng)過半徑OC的外端C

  ∴直線AB是⊙O的切線。

  練習1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

  練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

  求證:CD是⊙O的切線。

  例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

  求證:DE是⊙O的切線。

  思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

  四、小結

  1.切線的判定定理。

  2.判定一條直線是圓的切線的方法:

 、俣x:直線和圓有唯一公共點。

 、跀(shù)量關系:直線到圓心的距離等于該圓半徑(即d = r)。[

 、矍芯的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。

  3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

  凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

  五、布置作業(yè):略

  《切線的判定》教后體會

  本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發(fā),通過學生自我活動得到數(shù)學結論作為教學重點,呈現(xiàn)學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:

  成功之處:

  一、 教材的二度設計順應了學生的認知規(guī)律

  這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結論,導致錯誤,久之便會失去學習數(shù)學的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現(xiàn)了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。

  二、重視學生數(shù)感的培養(yǎng)呼應了課改的理念

  數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數(shù)感,不僅會對數(shù)學知識反應靈敏,更會在生活中不知不覺運用數(shù)學思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導,學生發(fā)現(xiàn)完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結規(guī)律,也是對學生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結論,這個結論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。

  不足之處:

  一、這節(jié)課沒有“高潮”,沒有讓學生特別興奮激起求知欲的情境,整個教學過程是在一個平靜、和諧的氛圍中完成的。

  二、課的引入太直截了當,脫離不了應試教學的味道。

  三、教學風格的定勢使所授知識不能很合理地與生活實際相聯(lián)系,一定程度上阻礙了學生解決實際問題能力的發(fā)展。

  通過本節(jié)課的教學,我深刻感悟到在教學實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學形狀,適應現(xiàn)代教育,適應現(xiàn)代學生。課堂教學中,敢于實驗,舍得放手,盡量培養(yǎng)學生主體意識,問題讓學生自己去揭示,方法讓學生自己去探索,規(guī)律讓學生自己去發(fā)現(xiàn),知識讓學生自己去獲得,教師只提供給學生現(xiàn)實情境、充足的思考時間和活動空間,給學生表現(xiàn)自我的機會和成功的體驗,培養(yǎng)學生的自我意識,發(fā)揮學生的主體作用,來真正實現(xiàn)《數(shù)學課程標準》中提出的“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者”這一教學理念。

初中數(shù)學教案6

  教學目標:

  1、通過解題,使學生了解到數(shù)學是具有趣味性的。

  2、培養(yǎng)學生勤于動腦的習慣。

  教學過程:

  一、出示趣味題

  師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。

  1、小衛(wèi)到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛(wèi)原有( )錢?

  2、蘋蘋做加法,把一個加數(shù)22錯寫成12,算出結果是48,問正確結果是( )。

  3、小明做減法,把減數(shù)30寫成20,這樣他算出的得數(shù)比正確得數(shù)多

  ( ),如果小明算出的'結果是10,正確結果是( )。

  4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種

  辦法來用△表示。

  5、把一段布5米,一次剪下1米,全部剪下要( )次。

  6、李小松有10本本子,送給小剛2本后,兩人本子數(shù)同樣多,小剛原來

  有( )本本子。

  二、小組討論

  三、指名講解

  四、評價

  1、同學互評

  2、老師點評

  五、小結

  師:通過今天的學習,你有哪些收獲呢?

初中數(shù)學教案7

  學習目標

  1.理解平行線的意義兩條直線的兩種位置關系;

  2.理解并掌握平行公理及其推論的內(nèi)容;

  3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點

  探索和掌握平行公理及其推論.

  學習難點

  對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)

  一、學習過程:預習提問

  兩條直線相交有幾個交點?

  平面內(nèi)兩條直線的.位置關系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據(jù)此方法練習畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

  (二)平行公理及推論

  1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

 、谶^點C畫直線a的平行線,能畫 條;

 、勰惝嫷闹本有什么位置關系? 。

  ②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

 。ㄒ唬┻x擇題:

  1、下列推理正確的是 ( )

  A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

  C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

  2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )

  A.0個 B.1個 C.2個 D.3個

 。ǘ┨羁疹}:

  1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。

  2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應的位置關系:

 。1)L1與L2 沒有公共點,則 L1與L2 ;

  (2)L1與L2有且只有一個公共點,則L1與L2 ;

 。3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

  4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初中數(shù)學教案8

  初中數(shù)學分層次教學案例

  【案例主題:】學生參與教學,體現(xiàn)了現(xiàn)代教學理念:活動、合作、自由、民主、創(chuàng)新。

  【背景:】我在進行數(shù)學七年級上冊圖形的認識的應用教學時,處理定理時,隨著教學過程的深入,很有感想:??

  例題:課本p123證明兩個角之間的關系,

  請同學們總結一下他們可能出現(xiàn)的情況。

  【活動過程】師:誰能總結一下判定兩個角比較大小的方法?(學生都在緊張的思考中)(突然間,我發(fā)現(xiàn)一名平時學習較困難的學生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發(fā)言了。也有了我思想上的一次飛躍。)

  生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學在譏笑,這位學生頓時有些難堪,想坐下去,我趕緊制止。)

  師:很好!那你準備應該怎么做呢?生:嗯,(一下子來勁了):接著這位同學上黑板畫了圖,寫出自己度量的方法和自己的想法。

  師:剛才閆家銜同學真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學都為你今天的表現(xiàn)感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現(xiàn)就非常非常地出色,你今后的表現(xiàn)一定會更出色。好,下面我就讓我們一同來總結一下菱形的證明方法。

  在師生的共同研討下得出了這些方法。

  師:今天的課程內(nèi)容還有一項,那就是請閆家銜同學談談這堂課的感想。

  生:??以前我不敢發(fā)言,我怕說的不對會被同學們笑話,而今天的他的方法恰好是我前幾天才預習過的,所以一下子??我今天才發(fā)現(xiàn)不是這樣??我今后還會努力發(fā)言的??

  【理念反思】:從這一個學生的舉手發(fā)言到說得頭頭是道的“意外”中,我明白了:學生需要一個能充分展示自我的自由空間,作為老師,我們需要給學生一個自由的'民主的氛圍,能充分培養(yǎng)學生的自信,使“學困生”也能產(chǎn)生發(fā)言的欲望,也能對問題暢所欲言,教師還應能及時捕捉到這一閃光點,給每一位學生都有展示的機會。也就是說要使學生全部積極參與教學,因為它集中體現(xiàn)了現(xiàn)代課程理念:活動、合作、自由、民主、創(chuàng)新。

  1、活動、合作是現(xiàn)代課程中的新的理念,只有參與,才能合作創(chuàng)新。

  2、民主是現(xiàn)代課程中的重要理念。民主最直接的體現(xiàn)是在課程實施中學生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學生的參與

  就不是主動性參與,而是被動的、消極的參與。

  3、在提問時,應設計開放性的問題,如:“請你幫助設計一下,有幾種方案等問題?這樣才沒有限制學生的思維,給學生創(chuàng)設一個自由的空間,學生在這個空間中可以按自己的方式展開想象,才能暢所欲言。

  4、在課堂上,老師應不只關注“優(yōu)等生”,而應平等地對待每一個學生,讓學困生”和“學優(yōu)生”同時享有尊嚴和擁有一份自信。特別是發(fā)現(xiàn)到一個學困生在舉了手時,應及時給“學困生”展示的機會,讓他們發(fā)言,學生在發(fā)言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學生的成績和能夠大膽發(fā)言的勇氣。

初中數(shù)學教案9

  教學目標:

  1、進一步理解函數(shù)的概念,能從簡單的實際事例中,抽象出函數(shù)關系,列出函數(shù)解析式;

  2、使學生分清常量與變量,并能確定自變量的取值范圍.

  3、會求函數(shù)值,并體會自變量與函數(shù)值間的對應關系.

  4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.

  5、通過函數(shù)的教學使學生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.

  教學重點:了解函數(shù)的意義,會求自變量的取值范圍及求函數(shù)值.

  教學難點:函數(shù)概念的抽象性.

  教學過程:

 。ㄒ唬┮胄抡n:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數(shù).

  生活中有很多實例反映了函數(shù)關系,你能舉出一個,并指出式中的自變量與函數(shù)嗎?

  1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數(shù)n(個)的關系.

  2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數(shù)n(個)與單價(a)元的關系.

  解:1、y=30n

  y是函數(shù),n是自變量

  2、n是函數(shù),a是自變量.

 。ǘ┲v授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學式子即解析式表示的.這種用數(shù)學式子表示函數(shù)時,要考慮自變量的取值必須使解析式有意義.如第一題中的`學生數(shù)n必須是正整數(shù).

  例1、求下列函數(shù)中自變量x的取值范圍.

 。1)(2)

  (3)(4)

 。5)(6)

  分析:在(1)、(2)中,x取任意實數(shù),與都有意義.

 。3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.

  同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.

  第(5)小題,是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零.的被開方數(shù)是.

  同理,第(6)小題也是二次根式,是被開方數(shù),

  小結:從上面的例題中可以看出函數(shù)的解析式是整數(shù)時,自變量可取全體實數(shù);函數(shù)的解析式是分式時,自變量的取值應使分母不為零;函數(shù)的解析式是二次根式時,自變量的取值應使被開方數(shù)大于、等于零.

  注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問題也與次類似.

  但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關系.即2與-1這兩個值x都不能取.

  例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.

  (1)若設一般車停放的輛次數(shù)為x,總的保管費收入為y元,試寫出y關于x的函數(shù)關系式;

 。2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數(shù)的范圍.

  解:(1)

 。▁是正整數(shù),

 。2)若變速車的輛次不小于25%,但不大于40%,

  則收入在1225元至1330元之間

  總結:對于反映實際問題的函數(shù)關系,應使得實際問題有意義.這樣,就要求聯(lián)系實際,具體問題具體分析.

  對于函數(shù),當自變量時,相應的函數(shù)y的值是.60叫做這個函數(shù)當時的函數(shù)值.

  例3、求下列函數(shù)當時的函數(shù)值:

 。1)————(2)—————

  (3)————(4)——————

  注:本例既鍛煉了學生的計算能力,又創(chuàng)設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數(shù)的理解.

 。ǘ┬〗Y:

  這節(jié)課,我們進一步地研究了有關函數(shù)的概念.在研究函數(shù)關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應的函數(shù)值.另外,對于反映實際問題的函數(shù)關系,要具體問題具體分析.

  作業(yè):習題13.2A組2、3、5

  今天的內(nèi)容就介紹到這里了。

初中數(shù)學教案10

  1.初中數(shù)學教案模板

  1.課題

  填寫課題名稱(初中代數(shù)類課題)

  2.教學目標

  (1)知識與技能:

  通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;

  (2)過程與方法:

  通過......(討論、發(fā)現(xiàn)、探究)的過程,提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價值觀:

  通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應用到實際生活中,增加學生數(shù)學學習的樂趣。

  3.教學重難點

  (1)教學重點:本節(jié)課的知識重點

  (2)教學難點:易錯點、難以理解的知識點

  4.教學方法(一般從中選擇3個就可以了)

  (1)討論法

  (2)情景教學法

  (3)問答法

  (4)發(fā)現(xiàn)法

  (5)講授法

  5.教學過程

  (1)導入

  簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)

  (2)新授課程(一般分為三個小步驟)

 、俸唵沃v解本節(jié)課基礎知識點(例:類比一元一次方程的解法,講解一元一次不等式的解法和步驟)。

 、跉w納總結該課題中的重點知識內(nèi)容,尤其對該注意的'一些情況設置易錯點,進行強調(diào)?梢栽O計分組討論環(huán)節(jié)(例:分組討論一元一次不等式的解法,歸納總結一元一次不等式的方法步驟,設置系數(shù)化為一,負號要變號的易錯點)。

 、弁卣寡由,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題(例:設置一元一次不等式的應用題,學生再次體會一元一次不等式解決實際問題,并且再次鞏固不等式的解法)。

  (3)課堂小結

  教師提問,學生回答本節(jié)課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。

  6.教學板書

  2.初中數(shù)學教案格式

  課程編碼:______________________________________

  總學時 / 周學時: /

  開課時間: 年 月 日 第 周至第 周

  授課年級、專業(yè)、班級:___________________________

  使用教材:_______________________________________

  授課教師:_______________________________________

  1.章節(jié)名稱

  2.教學目的

  3.課時安排

  4.教學重點、難點

  5.教學過程(包括教學內(nèi)容、教師活動、學生活動、教學方法等)

  6.復習鞏固與作業(yè)要求

  7.教學環(huán)境及教具準備

  8.教學參考資料

  9.教學后記

  3.初中數(shù)學教案范文

  教學目的

  1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數(shù)學模型的作用。

  2.使學生會列一元一次方程解決一些簡單的應用題。

  3.會判斷一個數(shù)是不是某個方程的解。

  重點、難點

  1.重點:會列一元一次方程解決一些簡單的應用題。

  2.難點:弄清題意,找出“相等關系”。

  教學過程

  一、復習提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設小紅能買到工本筆記本,那么根據(jù)題意,得1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授

  問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)

  算術法:(328-64)÷44=264÷44=6(輛)

  列方程:設需要租用x輛客車,可得44x+64=328

  解這個方程,就能得到所求的結果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發(fā)現(xiàn)同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習

  教科書第3頁練習1、2。

  四、小結

  本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業(yè)

  教科書第3頁,習題6.1第1、3題。

初中數(shù)學教案11

  一、學生起點分析

  學生已經(jīng)了勾股定理,并在先前其他內(nèi)容學習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結論?

  反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經(jīng)具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。

  二、學習任務分析

  本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:

  ● 知識與技能目標

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標

  1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;

  2.經(jīng)歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。

  ● 情感與態(tài)度目標

  1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;

  2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

  教學重點

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學法

  1.教學方法:實驗猜想歸納論證

  本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結論已有一定的體驗

  但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:

  (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;

  (2)從學生活動出發(fā),通過以舊引新,順勢教學過程;

  (3)利用探索,研究手段,通過思維深入,領悟教學過程。

  2.課前準備

  教具:教材、電腦、多媒體課件。

  學具:教材、筆記本、課堂練習本、文具。

  四、教學過程設計

  本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

  2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

  意圖:

  通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

  意圖:

  通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過學生充分討論后,匯總各小組實驗結果發(fā)現(xiàn):①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

  從上面的分組實驗很容易得出如下結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  內(nèi)容2:說理

  提問:有同學認為測量結果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

  意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  滿足 的三個正整數(shù),稱為勾股數(shù)。

  注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的'認識。

  活動3:反思總結

  提問:

  1.同學們還能找出哪些勾股數(shù)呢?

  2.今天的結論與前面學習勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

  4.通過今天同學們合作探究,你能體驗出一個數(shù)學結論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

  意圖:進一步讓學生認識該定理與勾股定理之間的關系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

 、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習,加強對勾股定理及勾股定理逆定理認識及應用

  效果

  每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環(huán)節(jié):登高望遠

  內(nèi)容:

  1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?

  解答:由題意畫出相應的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

  效果:

  學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網(wǎng)格進行計算,從而解決問題。

  效果:

  學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應用。

  第六環(huán)節(jié):交流小結

  內(nèi)容:

  師生相互交流總結出:

  1.今天所學內(nèi)容①會利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

  2.從今天所學內(nèi)容及所作練習中總結出的經(jīng)驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。

  意圖:

  鼓勵學生結合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。

  效果:

  學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

  第七環(huán)節(jié):布置作業(yè)

  課本習題1.4第1,2,4題。

  五、教學反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。

  2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

  4.注重對學習新知理解應用偏困難的學生的進一步關注。

  5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調(diào)整,不做要求。

  由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調(diào)整。

  附:板書設計

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠

初中數(shù)學教案12

  教學目標

  1、認識度、分、秒,會進行度、分、秒間單位互化及角的和、差、倍、分計算。

  2、通過度、分、秒間的互化及角度的簡單運算,經(jīng)歷利用已有知識解決新問題的探索過程,培養(yǎng)學生的數(shù)感和對數(shù)學活動的興趣。

  3、在獨立思考的.基礎上,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的觀點,尊重和理解他人的見解,從而在交流中獲益。

  教學重點

  度、分、秒間單位互化及角的和、差、倍、分計算。

  知識難點

  度、分、秒間單位互化及角的和、差、倍、分計算。

  教學準備

  量角器、三角尺。

  教學過程

  (師生活動)設計理念

  復習

  任意畫一個銳角和鈍角,用字母分別表示這兩個角,用量角器分別理出這兩個角的度數(shù)。復習角的概念,角的表示及量角器的使用,為學習角度制作準備。

  探究新知在航行、測繪等工作以及生活中,我們經(jīng)常會碰到上述類似問題,即如何描述一個物體的方位。

  讓學生回憶學過的描述方法,師生共同探討解決問題的辦法。

  不斷移動可疑船的位置,讓學生描述緝私艇的航線,探求解決問題的規(guī)律。

  方位的表示通常用北偏東多少度、北偏西多少度或者南偏東多少度、南偏西多少度來表示。北偏東45度、北偏西45度、南偏東45度、南偏西45度,分別稱為東北方向、西北方向,東南方向、西南方向。

初中數(shù)學教案13

  一學期的工作結束了,可以說緊張忙碌卻收獲多多;仡欉@學期的工作,我教九(4)班的數(shù)學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經(jīng)驗,吸取教訓,使以后的工作能夠有效、有序地進行,現(xiàn)將教學所得總結如下:

  一、在備課方面

  在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。

  二、在教學過程方面

  在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系!敝挥谐浞职l(fā)揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發(fā)展。但還是難免受傳統(tǒng)教學觀念的影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學!啊钡慕虒W模式下,才開始進一步嘗試,并在不斷的嘗試中總結經(jīng)驗。

  三、工作中存在的問題

  1)、教材挖掘不深入。

  2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發(fā)不足。

  3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導

  4)、差生末抓在手。由于對學生的了解不夠,對學生的'學習態(tài)度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數(shù)。導致了教學中的盲目性。

  四、今后努力的方向

  1)、加強學習,學習新教學模式下新的教學思想。

  2)、熟讀初一到初三的數(shù)學教材,深入挖掘教材,進一步把握知識點和考點。

  3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。

  4)、加強轉差培優(yōu)力度。

  5)、加強教學反思,加大教學投入。

  一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業(yè)務水平。

初中數(shù)學教案14

  【學習目標】

  1.了解圓周角的概念.

  2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

  3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90的圓周角所對的弦是直徑.

  4.熟練掌握圓周角的定理及其推理的靈活運用.

  設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

  【學習過程】

  一、 溫故知新:

  (學生活動)同學們口答下面兩個問題.

  1.什么叫圓心角?

  2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

  二、 自主學習:

  自學教材P90---P93,思考下列問題:

  1、 什么叫圓周角?圓周角的兩個特征: 。

  2、 在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

  (1)一個弧上所對的圓周角的.個數(shù)有多少個?

  (2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?

  (3).同弧上的圓周角與圓心角有什么關系?

  3、默寫圓周角定理及推論并證明。

  4、能去掉同圓或等圓嗎?若把同弧或等弧改成同弦或等弦性質(zhì)成立嗎?

  5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

  三、 典型例題:

  例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,ACB的平分線交⊙O于D,求BC、AD、BD的長。

  例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

  四、 鞏固練習:

  1、(教材P93練習1)

  解:

  2、(教材P93練習2)

  3、(教材P93練習3)

  證明:

  4、(教材P95習題24.1第9題)

  五、 總結反思:

  【達標檢測】

  1.如圖1,A、B、C三點在⊙O上,AOC=100,則ABC等于( ).

  A.140 B.110 C.120 D.130

  (1) (2) (3)

  2.如圖2,1、2、3、4的大小關系是( )

  A.3 B.32

  C.2 D.2

  3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則BCD等于( )

  A.100 B.110 C.120 D.130

  4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對的圓周角的度數(shù)是________.

  5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則2=_______.

  (4) (5)

  6.(中考題)如圖5, 于 ,若 ,則

  7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

  【拓展創(chuàng)新】

  1.如圖,已知AB=AC,APC=60

  (1)求證:△ABC是等邊三角形.

  (2)若BC=4cm,求⊙O的面積.

  3、教材P95習題24.1第12、13題。

  【布置作業(yè)】教材P95習題24.1第10、11題。

初中數(shù)學教案15

  一、檢查反饋

  本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面,F(xiàn)將檢查情況總結如下教案方面的特點與不足。

  特點:

  1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文李雅芳等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。

  2、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的`合作意識和創(chuàng)新精神。

  3、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。

  不足:

  1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。

  2、個別教師教案過于簡單。

  作業(yè)方面的特點與不足

  特點:

  1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。

  2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。

  3、學生在書寫方面有很大進步。從檢查可以發(fā)現(xiàn)教師對學生作業(yè)的書寫格式有明確的要求。

  不足:

  1、對于學生書寫的工整性,還需加強教育。

  2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。

【初中數(shù)學教案】相關文章:

初中數(shù)學教案08-12

【精】初中數(shù)學教案01-12

初中數(shù)學教案【熱】01-12

【熱】初中數(shù)學教案01-12

初中數(shù)學教案【熱門】01-12

【熱門】初中數(shù)學教案01-12

初中數(shù)學教案【推薦】01-12

【薦】初中數(shù)學教案01-12

初中數(shù)學教案【薦】01-12

初中數(shù)學教案【精】01-26